If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+38p=0
a = 1; b = 38; c = 0;
Δ = b2-4ac
Δ = 382-4·1·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-38}{2*1}=\frac{-76}{2} =-38 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+38}{2*1}=\frac{0}{2} =0 $
| y-12/8=7 | | 512^5x-1=(1/8)^-4-x | | 2a²=8a-15=3a-3 | | 8=w+37/7 | | x(30x^2)-230x^2-88x=40 | | 13x+4x=19-6x | | r/5+34=40 | | 57.99+0.11d=58.43 | | 2a-20.3=a+2.7 | | 49x^2+84x+32=0 | | 7(v+5)=91 | | -7(7x-5)+6=-49x+41 | | 2a-20.3=a-3.5=a+2.7 | | 84/r+315/r+7=399r= | | x(x(30x-23)-88)=40 | | 2a-20.3=a-3.5=a.2.7 | | 4=w+22/7 | | 9^2+4^2=x^2 | | 49x^2+84x-32=0 | | h/3+19=22 | | 9x+4=7x-10 | | 3a^2-12a-96=0 | | (4x-13)(8x+11)=0 | | 135+246+7911=x | | 2(t-36)=36 | | 11=7(u-7)+5u | | 84/r+315/r+7=399 | | s+11/4=4/8 | | 7(2l+5)=189 | | m+1.7=0.77-0.9m | | 4x-x(4-3x)=12 | | 59+49=x |